DISCUSSION

The measured enthalpy change at the critical temperature is 170 cal/mole. The total energy, $W_{\rm o}$, required to disorder the alloy is related to the critical temperature by

$$R T_{C} = C W_{O}$$

where C is a constant whose numerical value depends on the assumptions made in each particular theory of ordering. However, $W_{\rm O}$ cannot be compared directly with $H_{\rm t}$ because of the partial disordering which occurs below $T_{\rm c}$ and the presence of short range order above $T_{\rm c}$. An experimental range of $H_{\rm t}$ is indicated by Sykes and Jones 17 who measured the energy of transformation of Cu_3Au as a function of temperature. From their calorimetric data they found that $124 < H_{\rm t} < 182$ cal/mole, which encompasses the value found in these experiments. An attempt to measure $dT_{\rm c}/dP$ was made some years ago by Wilson 18 who found a value of $1.2^{\rm o}K/{\rm kbar}$; this leads to an unreasonably large $H_{\rm t}$.

The results in Fig. 8 show that Eq. 3 gives an adequate representation of the pressure dependence of the ordering rate below T_c. Since V_t is about 0.02 cm³/mole, the term 1/2 PV_t can be neglected in comparison with PV in Eq. 3. Within the accuracy attained in these experiments, no pressure variation in V could be detected; more accurate determination of the sample pressure would be required for this purpose.